An Example of a Mean-Convex Mean Curvature Flow Developing Infinitely Many Singular Epochs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Singular Example for the Averaged Mean Curvature Flow

An embedded curve is presented which under numerical simulation of the averaged mean curvature flow develops first a loss of embeddedness and then a singularity where the curvature becomes infinite, all in finite time. This leads to the conjecture that not all smooth embedded curves persist for all times under the averaged mean curvature flow.

متن کامل

The Size of the Singular Set in Mean Curvature Flow of Mean-convex Sets

In this paper, we study the singularities that form when a hypersurface of positive mean curvature moves with a velocity that is equal at each point to the mean curvature of the surface at that point. It is most convenient to describe the results in terms of the level set flow (also called “biggest flow” [I2]) of Chen-Giga-Goto [CGG] and Evans-Spruck [ES]. Under the level set flow, any closed s...

متن کامل

Singular Perturbations of Mean Curvature Flow

We introduce a regularization method for mean curvature flow of a submanifold of arbitrary codimension in the Euclidean space, through higher order equations. We prove that the regularized problems converge to the mean curvature flow for all times before the first singularity.

متن کامل

Singularity Structure in Mean Curvature Flow of Mean Convex Sets

In this note we announce results on the mean curvature flow of mean convex sets in 3-dimensions. Loosely speaking, our results justify the naive picture of mean curvature flow where the only singularities are neck pinches, and components which collapse to asymptotically round spheres. In this note we announce results on the mean curvature flow of mean convex sets; all the statements below have ...

متن کامل

Crystalline mean curvature flow of convex sets

We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2015

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-015-9659-6